Constraint-Based Reasoning on Probabilistic Choice Operators
نویسندگان
چکیده
Probabilistic Concurrent Constraint Programming (PCCP) extends concurrent constraint languages with a probabilistic choice operator. This operator has proved to be useful in implementing randomized algorithms as well as stochastic processes. In this report, we present a filtering algorithm dedicated to the probabilistic choice operator which permits to address new kind of applications where probabilistic choices are partially known. This filtering algorithm helps to deduce information on the possible values of the probabilistic choice without requiring its full valuation. An implementation under the form of a library of SICStus Prolog is presented. Key-words: Probabilistic Concurrent Constraint Programming, Filtering Algorithm ∗ This work is part of the GENETTA project granted by the Brittany region. in ria -0 01 40 88 6, v er si on 2 24 A pr 2 00 7 Une approche contrainte pour raisonner avec un choix probabiliste partiellement connu (version tendue Résumé : La Programmation Concurrente par Contraintes Probabilistes (PCCP) tend la Programmation Concurrente par Contraintes par un oprateur de choix probabiliste. Cet oprateur a prouv son utilit par l’implantation d’algorithmes “randomiss” ainsi que dans la modlisation de processus stochastiques. Dans ce rapport, nous prsentons un nouvel algorithme de filtrage ddi l’oprateur de choix probabiliste nous permettant de modliser de nouvelles applications pour lesquelles les choix probabilistes ne sont que partiellement connus. Cet algorithme de filtrage nous permet d’obtenir de l’information sur les valeurs pouvant tre prises par le choix probabilistes tout en n’ayant qu’une connaissance partielle sur celui-ci. Une implantation prenant la forme d’une nouvelle librairie de SICStus Prolog est dcrite. Mots-clés : Programmation Concurrente par Contraintes Probabilistes, Algorithme de Filtrage in ria -0 01 40 88 6, v er si on 2 24 A pr 2 00 7 Constraint-Based Reasoning on Probabilistic Choice partially known 3
منابع مشابه
Probabilistic Choice Operators as Global Constraints: Application to Statistical Software Testing
Probabilistic Concurrent Constraint Programming (PCCP) [3] is an extension of Concurrent Constraint Programming (CCP) [5] where probabilistic choice operators are introduced to represent the randomness or uncertain behaviour of processes. A probabilistic choice between two processes can be though of as flipping a coin : head the first process is triggered, tail it is the second. Based on this t...
متن کاملProbabilistic Choice Operators as Constraint Combinators: Application to the Statistical Structural Testing Problem
Probabilistic Concurrent Constraint Programming (PCCP) extends concurrent constraint languages by providing probabilistic choice operators. These operators have proved to be useful in implementing randomized algorithms as well as stochastic processes. In this report, we present an instance of PCCP where probabilistic choice operators are modelled with constraint combinators. This modeling allow...
متن کاملBoosting Probabilistic Choice Operators
Probabilistic Choice Operators (PCOs) are convenient tools to model uncertainty in CP. They are useful to implement randomized algorithms and stochastic processes in the concurrent constraint framework. Their implementation is based on the random selection of a value inside a finite domain according to a given probability distribution. Unfortunately, the probabilistic choice of a PCO is usually...
متن کاملIntegrating Constraint Satisfaction and Spatial Reasoning
Many problems in AI, including planning, logical reasoning and probabilistic inference, have been shown to reduce to (weighted) constraint satisfaction. While there are a number of approaches for solving such problems, the recent gains in efficiency of the satisfiability approach have made SAT solvers a popular choice. Modern propositional SAT solvers are efficient for a wide variety of problem...
متن کاملA Markov Model for Probabilistic Concurrent Constraint Programming
This paper introduces a new approach towards the semantics of Concurrent Constraint Programming (CCP), which is based on operator algebras. In particular , we show how stochastic matrices can be used for modelling both a quantitative version of nondeterminism (in the form of a probabilistic choice) and synchronisa-tion. We will assume Probabilistic Concurrent Constraint Programming (PCCP) as th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007